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Propagation of weak disturbances and shock wave structure are studied in mixtures of a 
gas with large liquid drops and small solid particles, in the presence of particle precipi- 
tation on the drops. The dependence of wave number on disturbance frequency is obtained. 
The effect of the defining parameters on the attenuation coefficient and phase velocity of 
sound is found, together with their effect on flow in the shock wave relaxation zone. Some 
theoretical and experimental studies of wave propagation in two-phase media can be found in 
[1-11]. Shock wave structure in gas mixtures with solid particles was studied in [i]. In 
[2] the effect of phase transitions (evaporation, condensation) on flow in the compression 
wave relaxation zone was studied in a gaseous suspension of liquid drops. Shock wave struc- 
ture was studied in the presence of droplet breakup in [3]. In [4] flow in the relaxation 
zone of intense shock waves was studied with consideration of the effect of particle fusion. 
A detailed review of shock wave propagation studies in gas suspensions can be found in [5]. 
In [6] propagation of weak disturbances in a mixture of gas with solid inert particles was 
studied, while [7, 8] examined mixtures of gas and vapor with liquid drops in the presence 
of phase transitions. The effect of transient components of interphase interaction upon 
high frequency disturbances was considered in [9]. 

I. Basic Assumptions and Phase Equations of Star@ ,. We will make the assumptions usu- 
al in mechanics of multiphase media [12]. In addition we assume that the drops are incom- 
pressible, of one size, do not collide or break up, and that the effects of viscosity and 
thermal conductivity are significant only in the processes of gas phase interaction with 
the solid and liquid phases, that large drops interact with small particles, and that par- 
ticles collide with and are captured by drops. 

The dimensions of the solid particles are so small that their mixture with the gas can 
be treated as a single-velocity, single-temperature continuous medium with its own unique 
thermophysical properties. This medium will be termed an effective gas. 

Within the framework of these assumptions the equations of motion of the gas suspen- 
sion under consideration can be written easily (they can be obtained, for example, from 
equations in [3, 12]). Here we will present only the equation of state and the phase in- 
teraction laws, which indicate certain unique features of gas flow in the presence of par- 
ticle precipitation on drops. The gas will be considered calorically perfect, while the 
solid and liquid phases are incompressible media with constant specific heats. Then the 
equation of state of the effective gas and the large drops can be written in the form 

p =p~R1T1,  e 1 = C l T 1 ,  elp = cpT1, e~ = QT2, B1 = xlgRg, cl = cgv xtg -b 

+ cpx~v, c~ = c~x2~ § %x2v,  x~g § x~ v = t ,  x2z § z2v = 1 ;  p~, p~, Rg, 
Cgv, Cp, c t = cons t ,  x~g = p~g/p~, x~p = Plp/P~, x2z = P~z/P~, X2p = P2p/P2, 

P l =  Plg-~" Pip, P2 = P2I + P2p, ~ i  + az = t ,  P i=~, .P~ , ,  a i  = a ig  -~- 

Here p, e I , e2, TI, T2 are the gas pressure, and internal energies and temperatures 
of the effective gas and large drops; elp is the internal energy of the small particles; 
Pl, Pc, Plg, Plp, P2s P2D are the reduced densities of the effective gas, large drops, 
and their components: p1~ pp0, ps are the true densities of the effective gas, fine par- 
ticles, and liquid component of the large drops; ~i~, ~ip, a2s ~2p is the volume content 
of the mixture components; R e, cgv, Cp, cs are the ideal gas content, specific heat of the 
gas (at constant volume), th~ sm~ll particles, and the liquid component of the large drops. 
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2. Phase Interaction Laws. To define the intensity of fine particle capture by large 
drops we will use an elementary scheme of counting collisions between particles and drops. 
We will consider an isolated drop of diameter d, moving at velocity v 2 in an equilibrium 
mixture of gas with small particles having a velocity v I. Over a unit time there will col- 
lide with this drop all particles located at the given moment within the volume ~d21;vl - 
v~I/4. However, under the influence of the gas flow some particles arriving at the drop 
may change their trajectories and not collide, while some that do collide may undergo spec- 
ular reflection from the surface. Considering these facts, we write the expression for in- 
tensity of capture of fine particles in the form 

] = N• (~d2/4) Pip t v~ - -  v 2 l, N = ~ (dp, p~, ~g, d . . . .  ). ( 2 . 1 )  

Here  q i s  a c o r r e c t i o n  c o e f f i c i e n t ,  c h a r a c t e r i z i n g  t h e  e f f i c i e n c y  o f  p a r t i c l e  c o l l i s i o n  w i t h  
t h e  d r o p ,  and d e p e n d e n t  on t h e  c o n d i t i o n s  o f  t h e  f l o w  o f  t h e  m i x t u r e  o f  p a r t i c l e s  and gas  
o v e r  t h e  d rop  ( u s u a l l y  t h e  c o e f f i c i e n t  q can  be e x p r e s s e d  as  a f u n c t i o n  o f  Sr o r  r  = 
~Lpv/d  [ 1 3 ] ,  where  S tk  = 2LDv/d i s  t h e  S t o k e s  number and Lpv i s  t h e  c h a r a c t e r i s t i c  l e n g t h  
o f  change  in  p a r t i c l e  v e l o c l t y  upon a p p r o a c h  t o  t h e  d r o p ) ;  dp i s  t h e  d i a m e t e r  o f  t h e  s m a l l  
particles; ~g is the dynamic viscosity of the gas; ~ is the precipitation coefficient, in- 
dicating the fraction of particles colliding with the drop which are captured by it (the 
remaining fraction 1 - < is specularly reflected from the drop surface). 

We specify the interaction between the drop and the carrier medium in the following 
manner: 

/ = (~d~/8) o~ I v~ - -  v :  I O ~ - -  v~) ( 2 . 2  ) 

(C d is the drop resistance coefficient). Over a wide range of change of the defining param- 
eters we may write C d as [4, 14] 

[ 27tte~ ~ t/el~ < 80, 

Cd=.i02:27Re~ , 8 0 ~ .~Re l~< t0  ~, (2.3) 

~o~ ~< Re~, R ~  = v ~  d I v~ - v~ I / ~  

(Re12 is the Reynolds number relative to flow over the drop). 

The intensity of heat input to the drop from the carrier phase can be written as [2, 
5] 

q = n d),gNu~ (T~ - -  T2), Nu~ = 2 + 0,6t/e~r176 Pr~ = c~)ug (2.4) 

Here Nu I and Pr I are Nusselt and Prandtl numbers; Cgp, lg are the specific heat of the gas 
at constant pressure and its thermal conductivity coefficient. At low Reynolds numbers 
(Rel= << i) for C d and Nu I we may use simpler expressions [5, 12]: C d ~ 24/Re~ 2, Nul ~ 2. 

It should be noted that the inertial effect is significant in particle collisions with 
the drop if Stk = 2Lpv/d takes on sufficiently high values (Stk >> I). For low Stokes num- 
bers (Stk << i) precipitation of fine particles occurs basically due to their diffusion to 
the drop surface. The contribution of the inertial effect to the particle capture by drops 
is quite small in this case (D m 0) [13], since upon arrival near the drop the small parti- 
cles can change their trajectories and flow around it, following flow lines. Considering 
this, as well as the fact that some particles are reflected from the surface upon collision 
with the drop, we write the expression for precipitation of particles on a single drop in 
the dlffuslon re ime in the form <~dam n n Here n n a e �9 " g" " J = ~ P( DZ -- p)" pZ, p r the concentra- 
tions of particles on the drop surface and far therefrom; mp is the mass of one small parti- 
cle; ~ is the diffusion velocity dependent on the properties of the small particles, the 
drops, and the carrier medium, and determined experimentally or from some other c0nsidera- 
tions; the coefficient ~, as in Eq. (2.1), indicates the fraction of particles colliding 
with the drops which precipitate. We will assume below that < = 1 and npZ = 0 (i.e~ all 
particles falling on the drop surface precipitate into it). 

We will note that the diffusion velocity $ can be represented as the ratio of the par- 
ticle diffusion coefficient to the characteristic thickness of the diffusion (concentration) 
layer at the drop surface [15]. At present reliable experimental and theoretical data on 
the particle diffusion coefficient at the drop surface are lacking. 
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3. Dispersion Relationships. We will consider propagation of planar periodic waves 
in a gas suspension of fine particles and large liquid drops (gas-dust-drop mixture). We 
will assume that the undisturbed gas-dust-drop mixture is in thermodynamic equilibrium 
(v10 = v20 , T10 = T=0) and precipitation of the fine particles on drops does not occur. 

To study propagation of weak disturbances in such a medium (where Re12 << i, Stk << i) 
we linearize the equations of motion and seek a solution of the linear system thus obtained 
in the form of a decaying traveling wave exp[i(kx - ~t)]. The condition for existence of 
a nontrivial solution of that type leads to the following relationship between the wave vec- 
tor k and the dimensionless frequency of the disturbance o = ~xT/ag: 

k2 = ~2 %~oVg (: - ~ ' % / ~ )  (nl - ~.1oiC;'%/'~) (Cv - ~c~v)  
rgT~ (Cv - -  iffClV) (112 + ]]3) ~- II4/Yg ' 

lql =-a l0  -k ~20, II2 = ~,0(1 -- ~Zloi~%/TT)[S s (t - -  1/r~) - -  icrTm/~T 1, 

I I  3 = (~_ -- O~10iO'Tv/'fT)[S((Zlg 0 -}- Fp(ZlPO)-- (~'IO/(;Tm/TT] , 

n~ = (1 - z o ) ( ~ -  i ~ / ~ )  [1 - ( ~ o  + ~1o%) ~o/~], 
C v  = Cg v -~ mlpC p -]- m2Ct ' C1 v __~ Cg v + m, lpCp ' ( 3 . 1 )  

mlp  ~- 91po/~Olgo, m 2 = 920/9190, S : O~20/l'pO~lpO, 

Tm --- agtm~ %~ = agt w T T = ag[T~ 
oo~ o 2 O, i 7._____~d p~d c l 

t~.= to= ~-Wf t~ ~ ,  " ~rpO~jp 0 ~ 

0 0 0 0 - -  
F g  PlgO/~)l, rp = P;/PZ, alo = rea~go + rpa~po, 

Cg V = Cgv/~'gRg, Cp = Cp/%]g~g, C l = cl /ygRg.  

Here  t m, t v ,  and t T a r e  t h e  c h a r a c t e r i s t i c  t i m e s  f o r  change  in  mass  o f  an i n d i v i d u a l  d rop  
due t o  p r e c i p i t a t i o n  o f  s m a l l  p a r t i c l e s  t h e r e o n ,  and f o r  r e l a x a t i o n  o f  t h e  d rop  v e l o c i t y  
and t e m p e r a t u r e  in  t h e  S t o k e s  f l o w  r e g i m e ;  Xm, x v ,  x T a r e  t h e  r e d u c e d  r e l a x a t i o n  t i m e s ,  h a v -  
i ng  d i m e n s i o n s  o f  l e n g t h ;  mzp, m= a r e  t h e  r e l a t i v e  mass  c o n t e n t s  o f  f i n e  p a r t i c l e s  and l a r g e  
d r o p s ;  7g and ag a r e  t h e  a d i a b a t i c  i n d e x  o f  t h e  g a s  and t h e  s p e e d  o f  sound  t h e r e i n .  

I n  t h e  l i m i t i n g  c a s e s  we can  o b t a i n  f rom Eq. ( 3 . 1 )  e x p r e s s i o n s  f o r  t h e  e q u i l i b r i u m  
a e ( o  + 0) and f r o z e n  a f ( o  + ~)  s p e e d  o f  sound  in  t h e  g a s - d r o p  m i x t u r e ,  i n  t h e  p r e s e n c e  o f  
dust (fine particle) precipitation on the drops: 

[ r_z=ip0(1_%) ]i/2 

a i = . a g [ !  m,  F1] 1/2, (3,2)  
L~,g i +mlp 

F=Cgp+m~pCp§ z FI Cgp+mlpCp, 
Cg V -~- mlpC p -]- m2C l ' ~- Cg V Ac mlpC p 

m ,  = (t/rg -4- mlv/rp)  z + rn2 (l -4- rr~lp). 

In the absence of particle precipitation on drops (j - O) the dispersion relationship 
has the form 

k2 = 02 ,~lgO ([I1 -- 0~log(~Tv/TT) (~gCp/CIp* - -  ~(3) (C1v , /Clp) ,  " 

Cp = Cgp ~ m l p C  p -~ m2Cl, C1p = Cgp -~- m l p C  p, C I p ,  = l~gC1v. 

In this case the expression for the equilibrium and frozen speeds of sound will be: 

[ r 11/~ a~ = J (3.3) 
a o = ag _ Yga~go (i + mlp+ m~)J ' 

Comparing Eqs. (3.2) and (3.3), we note that at alp 0 << 1 the presence of particle pre- 
cipitation on the drops has an insignificant effect on the equilibrium speed of sound a e, 
and it may lead to either an increase (for rp > i) in the equilibrium velocity, or a de- 
crease (at rp < I). The presence of particle precipitation has no effect on the frozen 
speed of sound a f. It is interesting that at rp = pp0/ps = I the process of particle pre- 
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cipitation has no effect on the dependence of wave vector on frequency of the external dis- 
turbance. 

4. Formulation of the Problem and Conditions for Similarity of Shock Wave Structures. 
Let a planar shock wave propagate at velocity vz0, where v10 > ae, af, in an infinite space 
filled by a mixture of gas with fine particles and coarse drops. Then there will be a dis- 
continuity in the effective gas ahead of the shock wave, upon which the effective gas param- 
eters satisfy the Rankin-Hugoniot relationships, and the parameters of the coarse drops un- 
dergo practically no change. Nonequilibrium of velocity and temperature behind the discon- 
tinuity lead to formation of a relaxation zone where mass, momentum, and heat exchange oc- 
curs between the drops and effective gas. 

The parameters of the mixture components behind the discontinuity define boundary con- 
ditions at some point x = xf, corresponding to the position of the compression discontinu- 
ity, and permit calculation of the relaxation zone structure in the region x > xf. 

Now let a e < v10 < a f. Then there is no discontinuity before the shock wave, i.e., 
the mixture parameters in the comparison wave change continuously from the equilibrium state 
ahead of the wave to the equilibrium state behind it [2, 5]. In this case to formulate 
boundary conditions we can use the solution of the linearized system of equations of mixture 
motion in the vicinity of the initial state ahead of the wave. The formulation of boundary 
conditions for calculation of shock wave structure in gas-drop mixtures was considered in 
greater detail in [2, 3]. 

We will estimate the characteristic times for change in drop velocity, temperature, 
and mass behind the shock wave front. At high Reynolds numbers (Rez2 >> i), where Newtonian 
conditions are realized for flow of the gas over the drop, the characteristic velocity tvN 
and temperature tTN relaxation times have the form [16] 

r o ' = ' PlgOvlO 

Reos = p~godago/'~g, M ~ vao/ago. 

Here Re0s, M are the characteristic Reynolds and Mach numbers. Estimates show that tTN/ 
tvN >> i, i.e., for Re12 >> 1 the characteristic time for equalization of gas and drop tem- 
perature significantly exceeds the time for velocity equalization. 

In the case where the drop moves in an equilibrium mixture of gas with fine particles, 
the characteristic time for change in drop mass (due to inertial capture of particles) tm N 
0.2ps176 It follows from the expressions for tvN and tmN that tmN/tv N m O.08p~0~ 

~Plp0. It is evident that a t  Pl 0 ~ - Pl 0 and q - 1 as regards tmN and tv N we have tmN 
N g P t v , i . e . ,  t h e  c h a r a c t e r i s t i c  t i m e  f o r  i n c r e a s e  in  d rop  mass  due t o  c a p t u r e  o f  f i n e  p a r t i -  

c l e s  i s  much l e s s  t h a n  t h e  c h a r a c t e r i s t i c  t i m e  o f  d rop  v e l o c i t y  r e l a x a t i o n .  I t  s h o u l d  be 
n o t e d  t h a t  t h e  e x p r e s s i o n  f o r  tmN was o b t a i n e d  w i t h o u t  c o n s i d e r a t i o n  o f  t h e  e f f e c t  o f  change  
in  d rop  v e l o c i t y  upon p a r t i c l e  c a p t u r e  ( i . e . ,  i t  was o b t a i n e d  a s s u m i n g  c o n s t a n c y  o f  d rop  mo- 
t i o n  v e l o c i t y  in  t h e  e f f e c t i v e  g a s ) ,  w h i l e  t h e  e x p r e s s i o n  f o r  tvN i s  f o r  t h e  c a s e  where  f i n e  
p a r t i c l e s  a r e  a b s e n t  f rom t h e  gas  f l o w .  I n  c o n n e c t i o n  w i t h  t h i s  t h e  tmN and t v  N v a l u e s  a r e  
b a s i c a l l y  m e t h o d i c a l  i n  c h a r a c t e r .  

To a n a l y z e  t h e  c o n d i t i o n s  o f  s h o c k  wave s t r u c t u r e  s i m i l a r i t y  in  t h e  m i x t u r e  o f  gas  w i t h  
f i n e  p a r t i c l e s  and l a r g e  d r o p s  we w i l l  a n a l y z e  t h r e e  c a s e s .  

A. The mixture consists of a gas with drops (no fine particles). The similarity cri- 
teria then consist of seven dimensionless parameters: ~g, M, m 2 = Pi0/P10, ~ig0, C = c@/ 
CgV, Re0s, Pr I. The dominant effect on wave structure in gas suspensions is usually inter- 
phase friction, so that we can consider yg, M, and m 2 to be the basic criteria for approxi- 
mate flow similarity in the relaxation zone. 

B. The mixture consists of a gas with fine particles and large drops, but interaction 
between particles and drops is absent (j = 0). Then among the parameters for approximate 
similarity of shock wave flow structure we have the relative mass content of fine particles 
ahead of the wave mlp = P l p o / P l g o -  

C. Interactionbetween the particles and drops does exist in the mixture of gas with fine 
particles and large drops (j ~ 0). In this case the basic criteria for approximate similar- 
ity of shock wave structure will be the dimensionless quantities yg, M, M1p, m=, n- 
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5. Analysis of Calculation Results. The effects of precipitation of fine particles 
on large drops as well as that of the basic parameters on the character of dispersion rela- 
tionships and shock wave structure were studied. We considered propagation of weak distur- 
bances in mixtures of air with fine particles of charcoal and large water drops under nor- 
mal conditions (P0 = 0.i MPa, Tz0 = 293 K). The controlling parameters (mass contents of 
drops m 2 = P20/Pzg0 and fine particles mlp = Plp0/plg0, drop diameter d) were varied over 
the ranges m 2 = 0~5-2, mzp = 0-2, d = 10-50 llm. 

Figures i, 2 show curves reflecting the character of the dependence of phase velocity 
Up = vp/ag and attenuation coefficient 6 on dimensionless frequency of the external distur- 
bance o = ~T/am. Calculations showed that over a wide range of change in particle diffu- 
sion velocity I~ -~ < ~ < 10 m/sec the process of particle precipitation on drops has practi- 
cally no effect on the dependence of Up and 6 on frequency o. In connection with this, one 
and the same curve on the figures corresponds to both presence and absence of precipitation. 
Figure 1 illustrates the effect of drop diameter on the dependence of attenuation frequency 
and speed of sound on external disturbance frequency in the presence (mid r 0) and absence 
(mzp = 0) of fine particles in the effective gas composition. Curves i-~ correspond to d = 
i0, 20, and 30 Mm for one and the same mass content (m 2 = i), with the dashed and solid 
lines being fine particle mass contents of mzp = 0 and mip = i. 

It is evident that change in drop size strongly affects the disturbance attenuation 
coefficient, a decrease in drop diameter leads to more rapid attenuation of sound. The 
most significant process affecting the dispersion relationships is usually interphase fric- 
tion. With decrease in drop size the intensity of interphase friction increases, which 
leads to an increase in viscous dissipation of the disturbance energy. It is interesting 
that change in drop diameter has practically no effect on the dependence of phase velocity Up 
on dimensionless disturbance frequency o. 

The effect of mass content of fine particles mlp on attenuation coefficient and phase 
velocity of disturbances is shown in Fig. 2. Curves 1-3 correspond to contents mzD = 0.5, 
i, and 2, while the dashed lines are for absence of fine particles in the mixture [mlp = 0). 
The mass content of large drops and their diameter are fixed: m 2 = i, d = 20 gm. It-is 
evident that increase in mass content of fine particles in the mixture leads to a marked de- 
crease in the attenuation coefficient and phase velocity of the disturbances. 

We will note that in the external disturbance frequency range considered (0 < ~t T 
20) the contribution of transient Basset, Archimedes, and combined mass forces to the net 
interphase interaction is quite low. However, at very high frequency (~t T z 102 ) because 
of the nonsteady nature of flow over the drop by the gas these interphase forces are com- 
parable to the quasisteady interphase Stokes friction force, Eq. (2.2), or even exceed the 
latter. Therefore, consideration of nonsteady effects basically affects the disturbance 
attenuation coefficient, with a quite weak effect on the phase velocity [9, 12]. 

The structure of a shock wave in a mixture of air with fine graphite dust particles and 
large water drops was also studied. It was assumed that the mixture was in thermodynamic 
equilibrium ahead of the wave (vz0 = v20, T10 = T20) at a pressure of 0.1 MPa. The equa- 
tions of motion of the gas mixture with Eqs. (2.1)-(2.4) and corresponding boundary condi- 
tions were integrated numerically by a modified Euler method. The accuracy of calculations 
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was monitored by taking the first integrals of mass, momentum, and energy. The calculations 
were performed for waves with M = vz0/aK0 = 0.6-1.2. The relative mass content of fine par- 
ticles and large drops was varied from 0.5 to 2. The drop diameter was varied from 50 to 
200 ~m. The coefficient describing efficiency of particle capture by the drop ~ was consid- 
ered constant and varied from 0 to 0.8 (N = 0 corresponds to absence of particle precipita- 
tion). 

Some results illustrating the effect of particle capture by drops on mixture flow in 
the relaxation zone of a wave of intensity M = 1.2 at m 2 = i, mzp = i, and d = 200 ~m are 
shown in Fig. 3. The dashed, dash-dot, and continuous curves correspond to n = 0, 0.5, and 
0.8. Shown is the behavior of density of the effective gas ~z = Pl/Plg0, its components 
~ig = Plg/Plg0, ~zp = Pzp/~ig0, and the drops ~2 = P2/Plg0, together with their velocities 

vi = vi/ag0, temperatures T i = Ti/T10 (i = i, 2), and gas pressure ~ = P/P0 in the relaxa- 
tion zone (the additional subscript 0 indicates conditions ahead of the wave). 

It is evident that in the presence of particle capture by drops the reduced density of 
particles ~zp in the relaxation zone decreases, while in the absence of particle precipita- 
tion it increases (Fig. 3a). Two significant factors affect the reduced particle density: 
braking of the effective gas due to the pressure gradient (leading to increase in fine par- 
ticle concentration) and their precipitation on drops. Depending on which of these domi- 
nates, the reduced fine particle density in the wave relaxation zone may either increase or 
decrease. 
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ANALYTICAL AND NUMERICAL INVESTIGATION OF THE THREE- 

DIMENSIONAL VISCOUS SHOCK-LAYER ON BLUNT SOLIDS 

I. G. Brykina, V. V. Rusakov, and V. G. Shcherbak UDC 533.6.011 

Three-dimensional problems of viscous flow around bodies are presently among the most 
pressing problems of hypersonic aerodynamics in connection with the development of craft 
which move in the upper atmospheric layers. The use of numerical methods in solving such 
problems requires great amounts of computer time and internal computer memory. Therefore, 
development of approximate methods which, while being sufficiently accurate, can be used 
in engineering practice, is very timely. Many approximate methods have been developed for 
large Reynolds numbers Re. They are based on the boundary layer theory and require know- 
ledge of the parameters of nonviscous flow at the surface of the solid. However, there are 
presently no similar methods suitable for solving three-dimensional problems of viscous flow 
around solids at small and medium Reynolds numbers (Re ~ 103), where the viscosity is con- 
siderable throughout the entire region of perturbed flow and the classical boundary layer 
theory is inapplicable. 

On the basis of an approximate solution of the equations of a three-dimensional hyper- 
sonic viscous shock-layer, we have obtained an analytical solution for determining the ther- 
mal flux and the friction stress at the lateral surface of blunt solids for small and medium 
Re numbers with an allowance for the slippage effect and the temperature jump at the surface. 
For a flow characterized by medium or large Re values, a simple expression has been derived 
for the thermal flux distribution over the surface; the thermal flux is reduced to its value 
at the stagnation point. This expression depends only on the geometry of the body in the 
flow. The present article is a continuation of [i], where a similar problem was solved in 
the neighborhood of the symmetry plane. 

i. Consider the steady-state, three-dimensional hypersonic flow of a viscous gas 
around a smooth, blunt solid at small and medium Re numbers. The flowis investigated by 
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